If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2=49
We move all terms to the left:
7n^2-(49)=0
a = 7; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·7·(-49)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*7}=\frac{0-14\sqrt{7}}{14} =-\frac{14\sqrt{7}}{14} =-\sqrt{7} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*7}=\frac{0+14\sqrt{7}}{14} =\frac{14\sqrt{7}}{14} =\sqrt{7} $
| A=-6,b=5 | | 1/2+5y=10y-1/3 | | (6x+16.8)+2x=90 | | (13x-8)+(x)=90 | | -6+3x=x+8 | | 7+3r-3=7r+8-3r | | a+3+2a=-1+3a=4 | | 66=4x+14 | | 15=0.09(x) | | 8p=14=5p+27 | | y^2/5=36 | | -17x+120=-47x | | 1.8x^2-8.4x+5.6=0 | | 6+3x=5x-10x+8 | | 11/6x=-7 | | -5x-80=-25x | | 36-20x=-2x | | 13+7=-5(2x-4) | | -9+20=19×-4-18x | | 45+1/2x=3x | | 13/6x=-7 | | 15=23^2x | | 15m+7(17+13m=-57+18m | | X-2(3-x=2x+3(1-x) | | 6+3+b=30 | | 4z=1-z=1+z | | 2(4+2x)=-10x-6 | | -3(8y-5)=3(1-9y)+13 | | -3(8y-5)=3(1-9y)* | | 9x+2=7x+50 | | 2n/3-311=35/33 | | -3(8-5)=3(1-9y)+13 |